Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
PLoS Biol ; 22(3): e3002515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512963

RESUMO

The signaling environment, or niche, often governs the initial difference in behavior of an adult stem cell and a derivative that initiates a path towards differentiation. The transition between an instructive stem cell niche and differentiation niche must generally have single-cell resolution, suggesting that multiple mechanisms might be necessary to sharpen the transition. Here, we examined the Drosophila ovary and found that Cap cells, which are key constituents of the germline stem cell (GSC) niche, express a conserved microRNA (miR-124). Surprisingly, loss of miR-124 activity in Cap cells leads to a defect in differentiation of GSC derivatives. We present evidence that the direct functional target of miR-124 in Cap cells is the epidermal growth factor receptor (EGFR) and that failure to limit EGFR expression leads to the ectopic expression of a key anti-differentiation BMP signal in neighboring somatic escort cells (ECs), which constitute a differentiation niche. We further found that Notch signaling connects EFGR activity in Cap cells to BMP expression in ECs. We deduce that the stem cell niche communicates with the differentiation niche through a mechanism that begins with the selective expression of a specific microRNA and culminates in the suppression of the major anti-differentiation signal in neighboring cells, with the functionally important overall role of sharpening the spatial distinction between self-renewal and differentiation environments.


Assuntos
Proteínas de Drosophila , MicroRNAs , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , Ovário/metabolismo , Proteínas de Drosophila/metabolismo , Nicho de Células-Tronco/genética , Diferenciação Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células-Tronco/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Comunicação , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo
2.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526524

RESUMO

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Assuntos
Hematopoese , Macrófagos , Animais , Camundongos , Hematopoese/genética , Células-Tronco Hematopoéticas , Diferenciação Celular , Eritropoese , Fígado , Nicho de Células-Tronco/genética
3.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456551

RESUMO

Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs ß- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.


Assuntos
Caderinas , Nicho de Células-Tronco , Nicho de Células-Tronco/genética , Caderinas/genética , Caderinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Cateninas/genética , Cateninas/metabolismo , Músculo Esquelético/metabolismo , Adesão Celular/genética
4.
Nat Genet ; 55(11): 1941-1952, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857934

RESUMO

Hematopoietic stem cells (HSCs) regenerate after myeloablation, a procedure that adversely disrupts the bone marrow and drives leptin receptor-expressing cells, a key niche component, to differentiate extensively into adipocytes. Regeneration of the bone marrow niche is associated with the resolution of adipocytes, but the mechanisms remain poorly understood. Using Plin1-creER knock-in mice, we followed the fate of adipocytes in the regenerating niche in vivo. We found that bone marrow adipocytes were highly dynamic and dedifferentiated to leptin receptor-expressing cells during regeneration after myeloablation. Bone marrow adipocytes could give rise to osteolineage cells after skeletal injury. The cellular fate of steady-state bone marrow adipocytes was also plastic. Deletion of adipose triglyceride lipase (Atgl) from bone marrow stromal cells, including adipocytes, obstructed adipocyte dedifferentiation and led to severely compromised regeneration of HSCs as well as impaired B lymphopoiesis after myeloablation, but not in the steady state. Thus, the regeneration of HSCs and their niche depends on the cellular plasticity of bone marrow adipocytes.


Assuntos
Medula Óssea , Receptores para Leptina , Camundongos , Animais , Receptores para Leptina/genética , Plasticidade Celular , Células da Medula Óssea , Células-Tronco Hematopoéticas , Nicho de Células-Tronco/genética
5.
Aging Cell ; 22(11): e13980, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37681346

RESUMO

The craniofacial bones provide structural support for the skull and accommodate the vulnerable brain tissue with a protective cavity. The bone tissue undergoes constant turnover, which relies on skeletal stem cells (SSCs) and/or mesenchymal stem cells (MSCs) and their niches. SSCs/MSCs and their perivascular niche within the bone marrow are well characterized in long bones. As for cranial bones, besides bone marrow, the suture mesenchyme has been identified as a unique niche for SSCs/MSCs of craniofacial bones. However, a comprehensive study of the two different cranial stem cell niches at single-cell resolution is still lacking. In addition, during the progression of aging, age-associated changes in cranial stem cell niches and resident cells remain uncovered. In this study, we investigated age-related changes in cranial stem cell niches via single-cell RNA sequencing (scRNA-seq). The transcriptomic profiles and cellular compositions have been delineated, indicating alterations of the cranial bone marrow microenvironment influenced by inflammaging. Moreover, we identified a senescent mesenchymal cell subcluster and several age-related immune cell subclusters by reclustering and pseudotime trajectory analysis, which might be closely linked to inflammaging. Finally, differentially expressed genes (DEGs) and cell-cell communications were analyzed during aging, revealing potential regulatory factors. Overall, this work highlights the age-related changes in cranial stem cell niches, which deepens the current understanding of cranial bone and suture biology and may provide therapeutic targets for antiaging and regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Nicho de Células-Tronco , Camundongos , Animais , Nicho de Células-Tronco/genética , Transcriptoma/genética , Crânio , Células-Tronco
6.
Blood ; 142(18): 1529-1542, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37584437

RESUMO

The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.


Assuntos
Distúrbios no Reparo do DNA , Receptores para Leptina , Camundongos , Animais , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento/genética , Distúrbios no Reparo do DNA/metabolismo , Nicho de Células-Tronco/genética , Mamíferos/metabolismo
7.
Cell Rep ; 42(7): 112737, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37393620

RESUMO

Spermatogonial stem cells (SSCs) in the testis support the lifelong production of sperm. SSCs reside within specialized microenvironments called "niches," which are essential for SSC self-renewal and differentiation. However, our understanding of the molecular and cellular interactions between SSCs and niches remains incomplete. Here, we combine spatial transcriptomics, computational analyses, and functional assays to systematically dissect the molecular, cellular, and spatial composition of SSC niches. This allows us to spatially map the ligand-receptor (LR) interaction landscape in both mouse and human testes. Our data demonstrate that pleiotrophin regulates mouse SSC functions through syndecan receptors. We also identify ephrin-A1 as a potential niche factor that influences human SSC functions. Furthermore, we show that the spatial re-distribution of inflammation-related LR interactions underlies diabetes-induced testicular injury. Together, our study demonstrates a systems approach to dissect the complex organization of the stem cell microenvironment in health and disease.


Assuntos
Nicho de Células-Tronco , Testículo , Masculino , Humanos , Camundongos , Animais , Nicho de Células-Tronco/genética , Transcriptoma/genética , Sêmen , Espermatogônias , Diferenciação Celular/genética , Espermatogênese/genética
8.
Cancer Biol Ther ; 24(1): 2195363, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37005380

RESUMO

CD44 protein and its variant isoforms are expressed in cancer stem cells (CSCs), and various CD44 isoforms can have different functional roles in cells. Our goal was to investigate how different CD44 isoforms contribute to the emergence of stem cell (SC) overpopulation that drives colorectal cancer (CRC) development. Specific CD44 variant isoforms are selectively expressed in normal colonic SCs and become overexpressed in CRCs during tumor development. We created a unique panel of anti-CD44 rabbit genomic antibodies to 16 specific epitopes that span the entire length of the CD44 molecule. Our panel was used to comprehensively investigate the expression of different CD44 isoforms in matched pairs (n = 10) of malignant colonic tissue and adjacent normal mucosa, using two (IHC & IF) immunostaining approaches. We found that: i) CD44v8-10 is selectively expressed in the normal human colonic SC niche; ii) CD44v8-10 is co-expressed with the SC markers ALDH1 and LGR5 in normal and malignant colon tissues; iii) colon carcinoma tissues frequently (80%) stain for CD44v8-10 while staining for CD44v6 was less frequent (40%). Given that CD44v8-10 expression is restricted to cells in the normal human colonic SC niche and CD44v8-10 expression progressively increases during CRC development, CD44v8-10 expression likely contributes to the SC overpopulation that drives the development and growth of colon cancers. Since the CD44 variant v8-10 epitope is located on CD44's extracellular region, it offers great promise for targeted anti-CSC treatment approaches.


Assuntos
Carcinoma , Neoplasias do Colo , Nicho de Células-Tronco , Animais , Humanos , Carcinoma/genética , Carcinoma/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Nicho de Células-Tronco/genética
9.
Plant Physiol ; 192(2): 1115-1131, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36943300

RESUMO

Stem cells are the ultimate source of cells for various tissues and organs and thus are essential for postembryonic plant growth and development. SCARECROW (SCR) is a plant-specific transcription regulator well known for its role in stem cell renewal in plant roots, but the mechanism by which SCR exerts this function remains unclear. To address this question, we carried out a genetic screen for mutants that no longer express SCR in the stem cell niche of Arabidopsis (Arabidopsis thaliana) roots and characterized 1 of these mutants. Molecular genetics methods allowed us to pinpoint the causal mutation in this mutant in TELOMERIC PATHWAYS IN ASSOCIATION WITH STN 1 (TEN1), encoding a factor that protects telomere ends. Interestingly, TEN1 expression was dramatically reduced in the scr mutant. Telomerase and STN1 and CONSERVED TELOMERE MAINTENANCE COMPONENT 1 (CTC1), components of the same protein complex as TEN1, were also dramatically downregulated in scr. Loss of STN1, CTC1, and telomerase caused defects in root stem cells. These results together suggest that SCR maintains root stem cells by promoting expression of genes that ensure genome integrity. Supporting this conclusion, we demonstrated that the scr mutant accumulates more DNA damage than wild-type Arabidopsis and that this problem is aggravated after exposure to zeocin, a DNA damage reagent. Finally, we identified 2 previously uncharacterized motifs in TEN1 and provide evidence that a conserved amino acid residue in 1 of the motifs is indispensable for TEN1 function. SCR thus provides a connection between genome integrity and stem cell maintenance in Arabidopsis roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Telomerase , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nicho de Células-Tronco/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
10.
PLoS Genet ; 19(3): e1010684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972315

RESUMO

The function of the stem cell system is supported by a stereotypical shape of the niche structure. In Drosophila ovarian germarium, somatic cap cells form a dish-like niche structure that allows only two or three germ-line stem cells (GSCs) reside in the niche. Despite extensive studies on the mechanism of stem cell maintenance, the mechanisms of how the dish-like niche structure is shaped and how this structure contributes to the stem cell system have been elusive. Here, we show that a transmembrane protein Stranded at second (Sas) and its receptor Protein tyrosine phosphatase 10D (Ptp10D), effectors of axon guidance and cell competition via epidermal growth factor receptor (Egfr) inhibition, shape the dish-like niche structure by facilitating c-Jun N-terminal kinase (JNK)-mediated apoptosis. Loss of Sas or Ptp10D in gonadal apical cells, but not in GSCs or cap cells, during the pre-pupal stage results in abnormal shaping of the niche structure in the adult, which allows excessive, four to six GSCs reside in the niche. Mechanistically, loss of Sas-Ptp10D elevates Egfr signaling in the gonadal apical cells, thereby suppressing their naturally-occurring JNK-mediated apoptosis that is essential for the shaping of the dish-like niche structure by neighboring cap cells. Notably, the abnormal niche shape and resulting excessive GSCs lead to diminished egg production. Our data propose a concept that the stereotypical shaping of the niche structure optimizes the stem cell system, thereby maximizing the reproductive capacity.


Assuntos
Proteínas de Drosophila , Animais , Apoptose/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Germinativas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Nicho de Células-Tronco/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
11.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36892331

RESUMO

Adult stem cells maintain homeostatic self-renewal through the strategy of either population or single-cell asymmetry, and the former type of stem cells are thought to take passive while the latter ones take active competition for niche occupancy. Although the division ability of stem cells is known to be crucial for their passive competition, whether it is also crucial for active competition is still elusive. Drosophila female germline stem cells are thought to take active competition, and bam mutant germ cells are more competitive than wild-type germline stem cells for niche occupancy. Here we report that either cycB, cycE, cdk2, or rheb null mutation drastically attenuates the division ability and niche occupancy capacity of bam mutant germ cells. Conversely, accelerating their cell cycle by mutating hpo has an enhanced effect. Last but not least, we also determine that E-cadherin, which was proposed to be crucial previously, just plays a mild role in bam mutant germline niche occupancy. Together with previous studies, we propose that division ability plays a unified crucial role in either active or passive competition among stem cells for niche occupancy.


Assuntos
Células-Tronco Adultas , Proteínas de Drosophila , Animais , Feminino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transdução de Sinais/genética , Diferenciação Celular/genética , Ovário/metabolismo , Drosophila/genética , Células-Tronco Adultas/metabolismo , Células Germinativas/metabolismo , Nicho de Células-Tronco/genética , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ciclina B/metabolismo
12.
Biochem Biophys Res Commun ; 641: 1-9, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516479

RESUMO

Stem cell niche provides extrinsic signals to maintain stem cell renewal or initiate cell differentiation. Drosophila niche is composed of somatic terminal filament cells, cap cells and escort cells. However, the underlying mechanism for the development of stem cell niche remains largely unclear. Here we found that the expression of a zinc transporter Catsup is essential for ovary morphogenesis. Catsup knockdown in escort cells results in defects of niche establishment and germline stem cells self-renewal. These defects could be modified by altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that Catsup RNAi affected adult ovary morphogenesis by suppressing Notch signaling. Lastly, we demonstrated that the defects of Catsup RNAi could be restored by overexpression of heat shock cognate protein 70 (Hsc70). These findings expand our understanding of the mechanisms controlling adult oogenesis and niche establishment in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/metabolismo , Ovário/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Autorrenovação Celular/genética , Nicho de Células-Tronco/genética , Diferenciação Celular , Células-Tronco/metabolismo , Células Germinativas , Drosophila melanogaster/metabolismo
13.
Plant Physiol ; 191(2): 1365-1382, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427205

RESUMO

Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Nicho de Células-Tronco/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo
14.
Cell Mol Life Sci ; 79(12): 612, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451046

RESUMO

Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.


Assuntos
Doenças da Hipófise , Nicho de Células-Tronco , Humanos , Nicho de Células-Tronco/genética , Hipófise , Comunicação Celular , Transdução de Sinais
15.
PLoS Genet ; 18(10): e1010434, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301803

RESUMO

Within living organisms, stem cells respond to various cues, including to niche signals and growth factors. Niche signals originate from the stem cell's microenvironment and promote the undifferentiated state by preventing differentiation, allowing for stem cell self-renewal. On the other hand, growth factors promote stem cell growth and proliferation, while their sources comprise of a systemic input reflecting the animal's nutritional and metabolic status, and a localized, homeostatic feedback signal from the tissue that the stem cells serve. That homeostatic signal prevents unnecessary stem cell proliferation when the corresponding differentiated tissues already have optimal cell contents. Here, we recapitulate progresses made in our understanding of in vivo stem cell regulation, largely using simple models, and draw the conclusion that 2 types of stem cell deregulations can provoke the formation of benign tumors. Namely, constitutive niche signaling promotes the formation of undifferentiated "stem cell" tumors, while defective homeostatic signaling leads to the formation of differentiated tumors. Finally, we provide evidence that these general principles may be conserved in mammals and as such, may underlie benign tumor formation in humans, while benign tumors can evolve into cancer.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Animais , Humanos , Células-Tronco Neoplásicas/patologia , Neoplasias/genética , Neoplasias/patologia , Diferenciação Celular/genética , Transdução de Sinais , Proliferação de Células/genética , Nicho de Células-Tronco/genética , Mamíferos , Microambiente Tumoral
16.
Curr Opin Genet Dev ; 77: 101981, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084496

RESUMO

The discovery of slow-cycling cells at the corneal periphery three decades ago established the limbus as the putative corneal stem cell niche. Since then, studies have underscored the importance of the limbal stem cells in maintaining the health and function of the ocular surface. Advancements in our understanding of stem cell biology have been successfully translated into stem cell therapies for corneal diseases. Here, we review recent developments in mouse genetics, intravital imaging, and single-cell genomics that have revealed an underappreciated complexity of the limbal stem cells, from their molecular identity, function, and interactions with their niche environment. Continued efforts to elucidate stem cell dynamics of this extraordinary tissue are critical for not only understanding stem cell biology but also for advancing therapeutic innovation and development.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Camundongos , Animais , Epitélio Corneano/fisiologia , Células-Tronco/fisiologia , Nicho de Células-Tronco/genética
17.
Cell Death Dis ; 13(9): 756, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056003

RESUMO

In Drosophila ovary, niche is composed of somatic cells, including terminal filament cells (TFCs), cap cells (CCs) and escort cells (ECs), which provide extrinsic signals to maintain stem cell renewal or initiate cell differentiation. Niche establishment begins in larval stages when terminal filaments (TFs) are formed, but the underlying mechanism for the development of TFs remains largely unknown. Here we report that transcription factor longitudinals lacking (Lola) is essential for ovary morphogenesis. We showed that Lola protein was expressed abundantly in TFCs and CCs, although also in other cells, and lola was required for the establishment of niche during larval stage. Importantly, we found that knockdown expression of lola induced apoptosis in adult ovary, and that lola affected adult ovary morphogenesis by suppressing expression of Regulator of cullins 1b (Roc1b), an apoptosis-related gene that regulates caspase activation during spermatogenesis. These findings significantly expand our understanding of the mechanisms controlling niche establishment and adult oogenesis in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Apoptose/genética , Diferenciação Celular/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Masculino , Ovário/metabolismo , Nicho de Células-Tronco/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899779

RESUMO

In animals and plants, stem-cell niches are local microenvironments that are tightly regulated to preserve their unique identity while communicating with adjacent cells that will give rise to specialized cell types. In the primary root of Arabidopsis thaliana, two transcription factors, BRAVO and WOX5, among others, are expressed in the stem-cell niche. Intriguingly, BRAVO, a repressor of quiescent center divisions, confines its own gene expression to the stem-cell niche, as evidenced in a bravo mutant background. Here, we propose through mathematical modeling that BRAVO confines its own expression domain to the stem-cell niche by attenuating a WOX5-dependent diffusible activator of BRAVO. This negative feedback drives WOX5 activity to be spatially restricted as well. The results show that WOX5 diffusion and sequestration by binding to BRAVO are sufficient to drive the experimentally observed confined BRAVO expression at the stem-cell niche. We propose that the attenuation of a diffusible activator can be a general mechanism acting at other stem-cell niches to spatially confine genetic activity to a small region while maintaining signaling within them and with the surrounding cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Nitrilas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nicho de Células-Tronco/genética
19.
Stem Cell Res Ther ; 13(1): 233, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659296

RESUMO

Distinct regions harboring cancer stem cells (CSCs) have been identified within the microenvironment of various tumors, and as in the case of their healthy counterparts, these anatomical regions are termed "niche." Thus far, a large volume of studies have shown that CSC niches take part in the maintenance, regulation of renewal, differentiation and plasticity of CSCs. In this review, we summarize and discuss the latest findings regarding CSC niche morphology, physical terrain, main signaling pathways and interactions within them. The cellular and molecular components of CSCs also involve genetic and epigenetic modulations that mediate and support their maintenance, ultimately leading to cancer progression. It suggests that the crosstalk between CSCs and their niche plays an important role regarding therapy resistance and recurrence. In addition, we updated diverse therapeutic strategies in different cancers in basic research and clinical trials in this review. Understanding the complex heterogeneity of CSC niches is a necessary pre-requisite for designing superior therapeutic strategies to target CSC-specific factors and/or components of the CSC niche.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Nicho de Células-Tronco/genética
20.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743225

RESUMO

BIG, a regulator of polar auxin transport, is necessary to regulate the growth and development of Arabidopsis. Although mutations in the BIG gene cause severe root developmental defects, the exact mechanism remains unclear. Here, we report that disruption of the BIG gene resulted in decreased quiescent center (QC) activity and columella cell numbers, which was accompanied by the downregulation of WUSCHEL-RELATED HOMEOBOX5 (WOX5) gene expression. BIG affected auxin distribution by regulating the expression of PIN-FORMED proteins (PINs), but the root morphological defects of big mutants could not be rescued solely by increasing auxin transport. Although the loss of BIG gene function resulted in decreased expression of the PLT1 and PLT2 genes, genetic interaction assays indicate that this is not the main reason for the root morphological defects of big mutants. Furthermore, genetic interaction assays suggest that BIG affects the stem cell niche (SCN) activity through the SCRSCARECROW (SCR)/SHORT ROOT (SHR) pathway and BIG disruption reduces the expression of SCR and SHR genes. In conclusion, our findings reveal that the BIG gene maintains root meristem activity and SCN integrity mainly through the SCR/SHR pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Meristema , Raízes de Plantas/metabolismo , Nicho de Células-Tronco/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...